0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAn interactive robot framework accomplishes long-horizon task planning and can easily generalize to new goals and distinct tasks, even during execution. However, most traditional methods require predefined module design, making it hard to generalize to different goals. Recent large language model based approaches can allow for more open-ended planning but often require heavy prompt engineering or domain specific pretrained models. To tackle this, we propose a simple framework that achieves interactive task planning with language models by incorporating both high-level planning and low-level skill execution through function calling, leveraging pretrained vision models to ground the scene in language. We verify the robustness of our system on the real world task of making milk tea drinks. Our system is able to generate novel high-level instructions for unseen objectives and successfully accomplishes user tasks. Furthermore, when the user sends a new request, our system is able to replan accordingly with precision based on the new request, task guidelines and previously executed steps. Our approach is easy to adapt to different tasks by simply substituting the task guidelines, without the need for additional complex prompt engineering. Please check more details on our https://wuphilipp.github.io/itp_site and https://youtu.be/TrKLuyv26_g.
Boyi Li, Philipp Wu, Pieter Abbeel, Jitendra Malik (2023). Interactive Task Planning with Language Models. , DOI: https://doi.org/10.48550/arxiv.2310.10645.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2310.10645
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access