Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Recovering human body configurations using pairwise constraints between parts

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2005

Recovering human body configurations using pairwise constraints between parts

0 Datasets

0 Files

en
2005
DOI: 10.1109/iccv.2005.204

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jitendra Malik
Jitendra Malik

University of California, Berkeley

Verified
Xiaofeng Ren
Alexander C. Berg
Jitendra Malik

Abstract

the body configuration in (b). The goal of this work is to recover human body configurations from static images. Without assuming a priori knowledge of scale, pose or appearance, this problem is extremely challenging and demands the use of all possible sources of information. We develop a framework which can incorporate arbitrary pairwise constraints between body parts, such as scale compatibility, relative position, symmetry of clothing and smooth contour connections between parts. We detect candidate body parts from bottom-up using parallelism, and use various pairwise configuration constraints to assemble them together into body configurations. To find the most probable configuration, we solve an Integer Quadratic Programming problem with a standard technique using linear approximations. Approximate IQP allows us to incorporate much more information than the traditional dynamic programming and remains computationally efficient. 15 hand-labeled images are used to train the low-level part detector and learn the pairwise constraints. We show test results on a variety of images. 1.

How to cite this publication

Xiaofeng Ren, Alexander C. Berg, Jitendra Malik (2005). Recovering human body configurations using pairwise constraints between parts. , DOI: https://doi.org/10.1109/iccv.2005.204.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2005

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/iccv.2005.204

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access