0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMethylation-associated silencing of tumor suppressor genes is recognized as being a molecular hallmark of human cancer. Unlike genetic alterations, changes in DNA methylation are potentially reversible. This possibility has attracted considerable attention from a therapeutics standpoint. Nucleoside-analogue inhibitors of DNA methyltransferases, such as 5-aza-2'-deoxycytidine, are able to demethylate DNA and restore silenced gene expression. Unfortunately, the clinical utility of these compounds has not yet been fully realized, mainly because of their side effects. A few non-nucleoside inhibitors of DNA methyltransferases have been reported, including the anti-arrhythmia drug procainamide. Following this need to find new demethylating agents, we have tested the potential use of procaine, an anesthetic drug related to procainamide. Using the MCF-7 breast cancer cell line, we have found that procaine is a DNA-demethylating agent that produces a 40% reduction in 5-methylcytosine DNA content as determined by high-performance capillary electrophoresis or total DNA enzyme digestion. Procaine can also demethylate densely hypermethylated CpG islands, such as those located in the promoter region of the RAR beta 2 gene, restoring gene expression of epigenetically silenced genes. This property may be explained by our finding that procaine binds to CpG-enriched DNA. Finally, procaine also has growth-inhibitory effects in these cancer cells, causing mitotic arrest. Thus, procaine is a promising candidate agent for future cancer therapies based on epigenetics.
Ana Villar‐Garea, Mario F. Fraga, Jesús Espada, Manel Esteller (2003). Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells.. , 63(16)
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2003
Authors
4
Datasets
0
Total Files
0
Language
en
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access