0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper studies the problem of detecting and segmenting acute intracranial hemorrhage on head computed tomography (CT) scans. We propose to solve both tasks as a semantic segmentation problem using a patch-based fully convolutional network (PatchFCN). This formulation allows us to accurately localize hemorrhages while bypassing the complexity of object detection. Our system demonstrates competitive performance with a human expert and the state-of-the-art on classification tasks (0.976, 0.966 AUC of ROC on retrospective and prospective test sets) and on segmentation tasks (0.785 pixel AP, 0.766 Dice score), while using much less data and a simpler system. In addition, we conduct a series of controlled experiments to understand "why" PatchFCN outperforms standard FCN. Our studies show that PatchFCN finds a good trade-off between batch diversity and the amount of context during training. These findings may also apply to other medical segmentation tasks.
Weicheng Kuo, Christian Häne, Esther L. Yuh, Pratik Mukherjee, Jitendra Malik (2018). PatchFCN for Intracranial Hemorrhage Detection. , DOI: https://doi.org/10.48550/arxiv.1806.03265.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2018
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.1806.03265
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access