Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Learning to optimally detect image boundaries using brightness, color and texture

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2010

Learning to optimally detect image boundaries using brightness, color and texture

0 Datasets

0 Files

en
2010
Vol 3 (9)
Vol. 3
DOI: 10.1167/3.9.113

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jitendra Malik
Jitendra Malik

University of California, Berkeley

Verified
David R. Martin
Charless C. Fowlkes
Jitendra Malik

Abstract

Goal: Psychophysics, e.g. Rivest and Cavanagh (1996), has shown that humans make combined use of multiple cues to detect and localize boundaries in images. We use a dataset of natural images to learn optimum cue combination of local brightness, texture and color, as well as quantify the relative power of these cues. Methods: Cue combination is formulated as supervised learning. A large dataset (∼1000) of natural images, each segmented by multiple human observers (∼10), provides the ground truth label for each pixel as having an oriented boundary element or not. The task is to model the posterior probability of a pixel being at a boundary, at a particular orientation, conditioned on local features derived from brightness, texture and color. Our features are based on computing directional gradients of outputs of V1-like mechanisms. Texture gradients are computed as differences in histograms of oriented filter outputs, and color gradients on histograms of a*, b* features in CIE L*a*b* space. Several types of classifiers ranging from logistic regression to support vector machines were trained. Performance was evaluated on a separate test set using a precision-recall curve which is a variant of the ROC curve. This curve can be summarized by its optimal F-measure, the harmonic mean of precision and recall. Results: (1)The precise form of the classifier does not matter-equally good results were obtained using logistic regression (weighted linear combination of features) as with more complicated classifiers. (2) Singly, brightness, texture and color yield F-measures of 0.62, 0.61, and 0.60 respectively. The optimal gray-scale combination of brightness and texture has an F-measure of 0.65 and addition of color boosts it to 0.67. These results indicate that the different cues are correlated but do carry independent information. By measuring inter-human consistency, the gold standard F-measure is 0.8, thus quantifying the gap left for more global and high-level processing.

How to cite this publication

David R. Martin, Charless C. Fowlkes, Jitendra Malik (2010). Learning to optimally detect image boundaries using brightness, color and texture. , 3(9), DOI: https://doi.org/10.1167/3.9.113.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2010

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1167/3.9.113

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access