0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe study the problem of imitating object interactions from Internet videos. This requires understanding the hand-object interactions in 4D, spatially in 3D and over time, which is challenging due to mutual hand-object occlusions. In this paper we make two main contributions: (1) a novel reconstruction technique RHOV (Reconstructing Hands and Objects from Videos), which reconstructs 4D trajectories of both the hand and the object using 2D image cues and temporal smoothness constraints; (2) a system for imitating object interactions in a physics simulator with reinforcement learning. We apply our reconstruction technique to 100 challenging Internet videos. We further show that we can successfully imitate a range of different object interactions in a physics simulator. Our object-centric approach is not limited to human-like end-effectors and can learn to imitate object interactions using different embodiments, like a robotic arm with a parallel jaw gripper.
Austin Patel, Andrew Wang, Ilija Radosavovic, Jitendra Malik (2022). Learning to Imitate Object Interactions from Internet Videos. , DOI: https://doi.org/10.48550/arxiv.2211.13225.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2211.13225
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access