0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPhosphorylation of the transcription factor interferon regulatory factor 3 (IRF3) is essential for the induction of promoters which contain the interferon-stimulated response element (ISRE). IRF3 can be activated by Toll-like receptor 3 (TLR3) in response to the double-stranded RNA mimic poly(I-C) and by TLR4 in response to lipopolysaccharide (LPS). Here we have analyzed the effect of the glucocorticoid dexamethasone on this response. Dexamethasone inhibited the induction of the ISRE-dependent gene RANTES (regulated on activation normal T cell expressed and secreted) in both U373-CD14 cells and human peripheral blood mononuclear cells and also an ISRE luciferase construct, activated by either TLR3 or TLR4. It also inhibited increased phosphorylation of IRF3 in its N terminus in response to LPS and in its C terminus on Ser-396 in response to either poly(I-C) or LPS. Several dexamethasone-induced phosphatases were tested for possible involvement in these effects; MKP1 did not appear to be involved, although MKP2 and MKP5 both partially inhibited induction of the ISRE, pointing to their possible involvement in the effect of dexamethasone. Importantly, we found that dexamethasone could inhibit TBK1 kinase activity and TBK1 phosphorylation on Ser-172, both of which are required for IRF3 phosphorylation downstream of TLR3 and TLR4 stimulation. Our study, therefore, demonstrates that TBK1 is a target for dexamethasone, common to both TLR3 and TLR4 signaling.
Claire E. McCoy, Susan Carpenter, Eva M. Pålsson‐McDermott, Linden J. Gearing, Luke O'neill (2008). Glucocorticoids Inhibit IRF3 Phosphorylation in Response to Toll-like Receptor-3 and -4 by Targeting TBK1 Activation. Journal of Biological Chemistry, 283(21), pp. 14277-14285, DOI: 10.1074/jbc.m709731200.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Biological Chemistry
DOI
10.1074/jbc.m709731200
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access