Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Evolution of antivirus defense in prokaryotes, depending on the environmental virus prevalence and virome dynamics

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Evolution of antivirus defense in prokaryotes, depending on the environmental virus prevalence and virome dynamics

0 Datasets

0 Files

en
2025
Vol 16 (10)
Vol. 16
DOI: 10.1128/mbio.02409-25

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Eugene V Koonin
Eugene V Koonin

National Center for Biotechnology Information

Verified
S. G. Babajanyan
Sofya K. Garushyants
Yuri I. Wolf
+1 more

Abstract

ABSTRACT Prokaryotes can acquire antivirus immunity via two fundamentally distinct types of processes: direct interaction with the virus, as in clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immunity systems, and horizontal gene transfer (HGT), which is the main route of transmission of innate immunity systems. These routes of defense evolution are not mutually exclusive and can operate concomitantly, but observations suggest that at least in some bacterial and archaeal species, one or the other route dominates the defense landscape. We hypothesized that the observed dichotomy stems from different life-history trade-offs characteristic of these organisms. To test this hypothesis, we analyzed a mathematical model of a well-mixed prokaryote population under a stochastically changing viral prevalence. Optimization of the long-term population growth rate reveals two contrasting modes of defense evolution. In stable, predictable environments, direct interaction with the virus is the optimal route of immunity acquisition. In fluctuating, unpredictable environments with a moderate viral prevalence, horizontal transfer of defense genes is preferred. In the HGT-dominant mode, we observed a universal distribution of the fraction of microbes with different immune repertoires. Under very low virus prevalence, the cost of immunity exceeds the benefits such that the optimal state of a prokaryote is complete absence of defense systems. By contrast, under very high virus prevalence, horizontal spread of defense systems dominates regardless of the stability of the virome. These findings might explain consistent but enigmatic patterns in the spread of antivirus defense systems among prokaryotes, such as the ubiquity of adaptive immunity in hyperthermophiles contrasting their patchy distribution among mesophiles. IMPORTANCE The virus-host arms race is a major component of the evolutionary process in all organisms that drove the evolution of a broad variety of immune mechanisms. In the last few years, over 200 distinct antivirus defense systems have been discovered in prokaryotes. There are two major modes of immunity acquisition: innate immune systems spread through microbial populations via HGT, whereas adaptive-type immune systems acquire immunity via direct interaction with the virus. We developed a mathematical model to explore the short-term evolution of prokaryotic immunity and showed that in stable environments with predictable viral repertoires, adaptive-type immunity is the optimal defense strategy, whereas in fluctuating environments with unpredictable virus composition, HGT dominates the immune landscape.

How to cite this publication

S. G. Babajanyan, Sofya K. Garushyants, Yuri I. Wolf, Eugene V Koonin (2025). Evolution of antivirus defense in prokaryotes, depending on the environmental virus prevalence and virome dynamics. , 16(10), DOI: https://doi.org/10.1128/mbio.02409-25.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1128/mbio.02409-25

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access