0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe lacrimal gland is an essential organ for ocular surface homeostasis. By producing the aqueous part of the tear film, it protects the eye from desiccation stress and external insults. Little is known about lacrimal gland (patho)physiology because of the lack of adequate in vitro models. Organoid technology has proven itself as a useful experimental platform for multiple organs. Here, we share a protocol to establish and maintain mouse and human lacrimal gland organoids starting from lacrimal gland biopsies. By modifying the culture conditions, we enhance lacrimal gland organoid functionality. Organoid functionality can be probed through a "crying" assay, which involves exposing the lacrimal gland organoids to selected neurotransmitters to trigger tear release in their lumen. We explain how to image and quantify this phenomenon. To investigate the role of genes of interest in lacrimal gland homeostasis, these can be genetically modified. We thoroughly describe how to genetically modify lacrimal gland organoids using base editors-from guide RNA design to organoid clone genotyping. Lastly, we show how to probe the regenerative potential of human lacrimal gland organoids by orthotopic implantation in the mouse. Together, this comprehensive toolset provides resources to use mouse and human lacrimal gland organoids to study lacrimal gland (patho)physiology.
Marie Bannier-Hélaouët, Maarten H. Geurts, Jeroen Korving, Harry Begthel, Hans Clevers (2023). Establishment, Maintenance, Differentiation, Genetic Manipulation, and Transplantation of Mouse and Human Lacrimal Gland Organoids. , DOI: https://doi.org/10.3791/65040.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3791/65040
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access