Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Enzymology and Structural Basis of Glycosyltransferases Involved in Saponin C28 Carboxylic Acid <i>O</i> - <scp>d</scp> -Fucosylation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Enzymology and Structural Basis of Glycosyltransferases Involved in Saponin C28 Carboxylic Acid <i>O</i> - <scp>d</scp> -Fucosylation

0 Datasets

0 Files

en
2025
Vol 5 (12)
Vol. 5
DOI: 10.1021/jacsau.5c00907

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jay D Keasling
Jay D Keasling

University of California, Berkeley

Verified
Graham A. Hudson
J.H. Pereira
Peter H. Winegar
+12 more

Abstract

Saponins are a class of natural products composed of an oxidized triterpene core adorned with glycosylations, ultimately giving rise to medicinally important compounds bearing bioactivity that includes, but is not limited to, anti-inflammatory, antimicrobial, antifungal, antiarrhythmic, and immunostimulatory activities. QS-21 is a prominent immunostimulatory saponin and is a critical adjuvant component of several FDA-approved vaccines. One linchpin modification in the biosynthesis and bioactivity of several saponins, including QS-21, is O-d-fucosylation via an ester linkage. In QS-21, the C28-COOH O-d-fucose residue is part of a linear oligosaccharide that is an integral component of the "core pharmacophore" responsible for its immunomodulatory activity. In this work, we performed in-depth in vitro enzymological characterization of two glycosyltransferases involved in C28-COOH O-d-fucosylation during the maturation of two saponin natural products: QsFucT from QS-21 biosynthesis and SvFucT from vaccaroside biosynthesis. QsFucT was previously shown to be a UDP-4-keto-6-deoxy-d-glucosyltransferase; our data reveal that the taxonomically distant SvFucT also functions as a UDP-4-keto-6-deoxy-d-glucosyltransferase and that both glycosyltransferases act on a triterpene acceptor with low-micromolar affinity. Substrate scope studies demonstrate that both enzymes are highly permissive with regard to both the triterpene acceptor and, unexpectedly, the UDP-sugar donor. These data also reveal that the conserved C3-OH branched trisaccharide of QS-21 and other saponins may serve an unusual biosynthetic role in protecting the C23 aldehyde from spurious reduction during biosynthesis. In addition, we crystallized and solved the structures of QsFucT and SvFucT, providing the first structural characterization of 4-keto-6-deoxy-d-glucosyltranferases in the glycosyltransferase family 1 (GT1) class of enzymes and used these structures to explore the importance of conserved residues in the active site. These data suggest that both QsFucT and SvFucT could be leveraged to rapidly explore saponin chemical space and glycodiversify these important medicinal compounds through engineered biosynthesis or in vitro enzymatic synthesis, possibly leading to novel analogs with enhanced physicochemical or pharmacological properties.

How to cite this publication

Graham A. Hudson, J.H. Pereira, Peter H. Winegar, David Fitzgerald, Andy DeGiovanni, Xixi Zhao, M. Astolfi, James Reed, Amr El‐Demerdash, Martin Rejzek, Shingo Kikuchi, Anne Osbourn, Henrik Vibe Scheller, Paul D. Adams, Jay D Keasling (2025). Enzymology and Structural Basis of Glycosyltransferases Involved in Saponin C28 Carboxylic Acid <i>O</i> - <scp>d</scp> -Fucosylation. , 5(12), DOI: https://doi.org/10.1021/jacsau.5c00907.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

15

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jacsau.5c00907

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access