Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ecological statistics of grouping by similarity

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2010

Ecological statistics of grouping by similarity

0 Datasets

0 Files

en
2010
Vol 3 (9)
Vol. 3
DOI: 10.1167/3.9.43

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jitendra Malik
Jitendra Malik

University of California, Berkeley

Verified
Charless C. Fowlkes
David R. Martin
Jitendra Malik

Abstract

Goal: Wertheimer (1923) proposed visual similarity as a key grouping factor but a precise definition has proved elusive. We formalize similarity by designing a function W(i,j) whose value is the probability that a pair of points i and j belong to the same visual group. Our goal is to learn an optimal functional form for W(i,j) based on brightness, texture and color measurements, and to quantify the relative power of these cues. Methods: A large dataset (∼1000) of natural images, each segmented by multiple human observers (∼10), provides the ground truth S(i,j) for pairs of pixels. S(i,j) = 1 if the pair lies in the same segment, 0 otherwise and will serve as the target function for W(i,j). We consider both region and boundary cues for computing W(i,j). Region cues are based on brightness, color, and texture differences between image patches at i and j, each characterized by histograms of the outputs of V1 like mechanisms. Oriented filter responses are used for texture and a*, b* features in CIE L*a*b* space for color. Boundary cues are incorporated by looking for the presence of an “intervening contour”, a large gradient (in brightness, texture or color) along a straight line connecting two pixels. The parameters of the patch and gradient features are calibrated using the human segmented images. Performance was evaluated on a separate test set using precision-recall curves as well as mutual information between W(i,j) and S(i,j) based on various cues. Results: For brightness, gradients yield better results than patch differences. However, for color, patches outperform gradients. Texture is the single most powerful cue, with both patches and gradients carrying significant independent information. The mutual information between S(i,j) and W(i,j) using all similarity cues is 0.19 nats, just 0.06 short of that between different human subjects. The proximity of the two pixels does not add any information beyond that provided by the similarity cues.

How to cite this publication

Charless C. Fowlkes, David R. Martin, Jitendra Malik (2010). Ecological statistics of grouping by similarity. , 3(9), DOI: https://doi.org/10.1167/3.9.43.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2010

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1167/3.9.43

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access