0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessModern computer vision algorithms often rely on very large training datasets. However, it is conceivable that a carefully selected subsample of the dataset is sufficient for training. In this paper, we propose a gradient-based importance measure that we use to empirically analyze relative importance of training images in four datasets of varying complexity. We find that in some cases, a small subsample is indeed sufficient for training. For other datasets, however, the relative differences in importance are negligible. These results have important implications for active learning on deep networks. Additionally, our analysis method can be used as a general tool to better understand diversity of training examples in datasets.
Kailas Vodrahalli, Ke Li, Jitendra Malik (2018). Are All Training Examples Created Equal? An Empirical Study. , DOI: https://doi.org/10.48550/arxiv.1811.12569.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2018
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.1811.12569
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access