0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper presents an adaptive neural control approach for nonstrict-feedback nonlinear systems in presence of unmodeled dynamics, unknown control directions and input dead-zone nonlinearity. To handle the difficulty due to uncertain control directions, Nussbaum gain functions are applied. Based on the structural characteristic of radial basis function neural networks, a backstepping-based adaptive neural control algorithm is developed. The main contributions of this paper lie in the fact that a backstepping-based neural control algorithm is developed for nonstrict-feedback nonlinear systems with unmodeled dynamics, unknown control directions and actuator dead-zone, and the total number of adaptive laws is not greater than the order of control system. As a beneficial result, the controller is much easier to be implemented in practice with less computational burden. A simulation example is given to reveal the viability of the presented approach. It is demonstrated by both theoretical analysis and simulation study that the presented control strategy ensures the semiglobally uniform ultimate boundedness of all closed-loop system signals.
Huanqing Wang, Hamid Reza Karimi, Peter Liu, Hongyan Yang (2017). Adaptive Neural Control of Nonlinear Systems With Unknown Control Directions and Input Dead-Zone. IEEE Transactions on Systems Man and Cybernetics Systems, 48(11), pp. 1897-1907, DOI: 10.1109/tsmc.2017.2709813.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Systems Man and Cybernetics Systems
DOI
10.1109/tsmc.2017.2709813
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access