Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Synthetic Trivalent Hapten that Aggregates anti-2,4-DNP IgG into Bicyclic Trimers

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2007

A Synthetic Trivalent Hapten that Aggregates anti-2,4-DNP IgG into Bicyclic Trimers

0 Datasets

0 Files

en
2007
Vol 129 (12)
Vol. 129
DOI: 10.1021/ja067159h

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
George M M Whitesides
George M M Whitesides

Harvard University

Verified
Başar Bilgiçer
Demetri T. Moustakas
George M M Whitesides

Abstract

This paper describes the synthesis of the trivalent hapten molecule 1, containing three 2,4-dinitrophenyl (2,4-DNP) groups, and the use of this molecule to aggregate three molecules of anti-2,4-DNP IgG into a complex with 3:2 stoichiometry (IgG312). The equilibrium product IgG312 was generated in ∼90% yield upon mixing IgG and 1; during incubation, thermodynamically unstable, high-molecular-weight aggregates (>104 nm in diameter) form first and convert subsequently to IgG312. The thermodynamics and the kinetics of the formation of aggregates were studied using size-exclusion high-performance liquid chromatography (SE-HPLC), dynamic light scattering (DLS), and analytical ultracentrifugation (AUC). An analytical model based on multiple species in equilibrium was developed and used to interpret the SE-HPLC data. The aggregate IgG312 was more stable thermodynamically and kinetically than monomeric aggregates of this IgG with monomeric derivatives of 2,4-DNP; this stability suggests potential applications of these aggregates in biotechnology.

How to cite this publication

Başar Bilgiçer, Demetri T. Moustakas, George M M Whitesides (2007). A Synthetic Trivalent Hapten that Aggregates anti-2,4-DNP IgG into Bicyclic Trimers. , 129(12), DOI: https://doi.org/10.1021/ja067159h.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2007

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/ja067159h

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access