menu_book Explore the article's raw data

Effects of carbon content on precipitate evolution and crack susceptibility in additively manufactured IN738LC

Abstract

Hot cracking is a major bottleneck preventing the additive manufacturing community from adopting precipitation-strengthened nickel-base superalloys, such as the IN738LC. Prior literature demonstrates the beneficial outcome of increasing the carbon content within IN738LC to alleviate its hot cracking problem. However, the effect of carbon content on the gamma prime precipitation and grain recrystallization was not fully addressed. Here, we fabricated five sample sets of IN738LC with different carbon contents and subjected these samples to two separate heat treatment processes. The precipitate and grain evolution were monitored under the backscattered electron imaging and electron backscattered diffraction studies. While the carbon addition could assist in addressing the hot cracking problem, horizontal delamination cracks were detected during the fabrication of large samples when the overall carbon content was above 0.4 wt.%, highlighting the need for care when introducing carbon for the purpose of resolving hot cracking.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Additive manufacturing
Cracking
Nickel-base superalloy
Carbon
Citations by Year

Share Your Research Data, Enhance Academic Impact