(Raw Data Set) An improved dynamic programming tracking-before-detection algorithm based on LSTM network value function
Abstract
The detection and tracking of small and weak maneuvering radar targets in complex electromagnetic environments is still a difficult problem to effectively solve. To address this problem, this paper proposes a dynamic programming tracking-before-detection method based on long short-term memory (LSTM) network value function(VL-DP-TBD). With the help of the estimated posterior probability provided by the designed LSTM network, the calculation of the posterior value function of the traditional DP-TBD algorithm can be more accurate, and the detection and tracking effect achieved for maneuvering small and weak targets is improved. Utilizing the LSTM network to model the posterior probability estimation of the target motion state, the posterior probability moving features of the maneuvering target can be learned from the noisy input data. By incorporating these posterior probability estimation values into the traditional DP-TBD algorithm, the accuracy and robustness of the calculation of the posterior value function can be enhanced, so that the improved architecture is capable of effectively recursively accumulating the movement trend of the target. Simulation results show that the improved architecture is able to effectively reduce the aggregation effect of a posterior value function and improve the detection and tracking ability for non-cooperative nonlinear maneuvering dim small target.