0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe Earth's surface is in constant change due to biotic and abiotic processes. During the last decades awareness arose that these biotic and abiotic processes might intensely interfere. Biogenic weathering, the acceleration of mineral weathering by autotroph-symbiont couples fuelled by photoassimilates for the sake of an equilibrated nutrient supply of involved biota, potentially drives denudation rates at ecosystem level. Our experiment aimed to examine how aridity affects biogenic weathering. The study was conducted along a gradient in Chile from humid to hyperarid climate (Atacama Desert), where photoassimilate production is increasingly limited by water stress. We hypothesize that biogenic weathering would cease if a threshold between element loss from denudation and energy demand for additional nutrient element mobilization by biogenic weathering is crossed, as competition between life for these elements becomes less intense when water supply limits biomass growth increasingly. We buried mesh bags containing freshly broken minerals, including biotite, muscovite and apatite along the gradient in Chile on granitic bedrock. Unexpectedly and in contrast to our initial hypothesis, we found that mineral weathering rates driven by mycorrhizal fungi under arid conditions were even proportionally higher, indicating a comparatively higher investment of photoassimilates into biogenic weathering by desert plants than by mediterranean, suggesting an adaptive mechanism. Additionally, biogenic weathering occurred at constant rates over a depth of up to 2.3 m, illustrating the constant mining of mycorrhizal fungi, irrespective of overall biological activity along the soil profile. The relative importance of biogenic weathering in arid climates furthermore points towards a fundamental function of biogenic weathering beyond nutrient mobilization by suggesting a regulatory role in overcoming long periods of missing soil water that prevent nutrient exchange from the soil matrix.
David C. Fleck, Simon Thiedau, Diana Boy, Leopold Sauheitl, Svenja Stock, Moritz Köster, Ralf Oeser, Michaela Dippold, Sandra Spielvogel, Yakov Kuzyakov, Yosef Steinberger, Roberto Godoy, Francisco J. Matus, Georg Guggenberger, Jens Boy (2025). Weathering by mycorrhizal fungi defines a threshold for nutrients in ecosystems along an aridity gradient. , 990, DOI: https://doi.org/10.1016/j.scitotenv.2025.179891.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
15
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.scitotenv.2025.179891
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access