0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe prevalence and transmission of airborne infections pose significant challenges to public health, leading to consequential negative impacts. Ventilation strategies are crucial in mitigating airborne infections in healthcare settings, preventing the spread of infectious diseases, thus protecting patients and healthcare workers. While individual studies have explored various aspects of ventilation in healthcare settings, a synthesized overview of the current state of knowledge is lacking. Therefore, this study attempts to bridge the gap by conducting a review and bibliometric analysis based on 198 papers published within the recent decades (1993–2022). The findings will provide a holistic understanding on the innovative interventions and identify areas for future research, thereby contributing to the development of effective guidelines for controlling airborne infections. The co-authorship analysis revealed that China emerged as the main contributor in the current research field due to the keen interest of researchers and the substantial financial support provided by funding agencies. The keyword co-occurrence analysis identified three primary research hotspots within the field, (i) the optimized ventilation strategies for combating airborne infection, (ii) the transition towards the application of computational fluid dynamics (CFD) in analyzing airflow patterns, and, (iii) the characteristics of airborne particles and their impact on infection transmission. The present review highlights the significance of local ventilation as an additional measure to the main ventilation system for enhanced dilution of contaminants in high-risk areas. The transition towards dynamic airflow analysis considered human movement's effect, allowing for more precise assessments and tailored ventilation strategies optimization. The review also underscores the emerging concern of microplastic as an indoor contaminant with potential implications as a virus carrier, emphasizing further research on its behavior and impact on airborne infection transmission.
Hong Yee Kek, Syahmi Bazlisyam Mohd Saupi, Huiyi Tan, Mohd Hafiz Dzarfan Othman, Bemgba Bevan Nyakuma, Pei Sean Goh, Wahid Ali Hamood Altowayti, Adeb Qaid, Nur Haliza Abdul Wahab, Chia Hau Lee, Arnas Lubis, Syie Luing Wong, Keng Yinn Wong (2023). Ventilation strategies for mitigating airborne infection in healthcare facilities: A review and bibliometric analysis (1993–2022). Energy and Buildings, 295, pp. 113323-113323, DOI: 10.1016/j.enbuild.2023.113323.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
Energy and Buildings
DOI
10.1016/j.enbuild.2023.113323
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access