0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWith the advance of on-chip nanophotonics, there is a high demand for high-refractive-index and low-loss materials. Currently, this technology is dominated by silicon, but van der Waals (vdW) materials with a high refractive index can offer a very advanced alternative. Still, up to now, it was not clear if the optical anisotropy perpendicular to the layers might be a hindering factor for the development of vdW nanophotonics. Here, we studied WS2-based waveguides in terms of their optical properties and, particularly, in terms of possible crosstalk distance. Surprisingly, we discovered that the low refractive index in the direction perpendicular to the atomic layers improves the characteristics of such devices, mainly due to expanding the range of parameters at which single-mode propagation can be achieved. Thus, using anisotropic materials offers new opportunities and novel control knobs when designing nanophotonic devices.
Andrey A. Vyshnevyy, Georgy A. Ermolaev, Dmitriy Grudinin, К. В. Воронин, Ivan Kharichkin, Arslan Mazitov, Ivan A. Kruglov, Dmitry I. Yakubovsky, Prabhash Mishra, Roman V. Kirtaev, Aleksey V. Arsenin, Konstantin ‘kostya’ Novoselov, L. Martı́n-Moreno, Valentyn S. Volkov (2023). van der Waals Materials for Overcoming Fundamental Limitations in Photonic Integrated Circuitry. Nano Letters, 23(17), pp. 8057-8064, DOI: 10.1021/acs.nanolett.3c02051.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
14
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/acs.nanolett.3c02051
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access