0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this study, the concept of a semi-independent variable (SIV) problem representation is investigated that embodies a set of expected or desired relationships among the original variables, with the goal of increasing search effectiveness and efficiency. The proposed approach intends to eliminate the generation of infeasible solutions associated with the known relationships among the variables and cutting the search space, thereby potentially improving a search algorithm's convergence rate and narrowing down the search space. However, this advantage does not come for free. The issue is the multiplicity of SIV formulations and their varying degree of complexity, especially with respect to variable interaction. In this paper, we propose the use of automatic variable interaction analysis methods to compare and contrast different SIV formulations. The performance of the proposed approach is demonstrated by implementing it within a number of classical and evolutionary optimization algorithms (namely, interior-point algorithm, simulated annealing, particle swarm optimization, genetic algorithm and differential evolution) in the application to several practical engineering problems. The case study results clearly show that the population-based algorithms can significantly benefit from the proposed SIV formulation resulting in better solutions with fewer function evaluations than in the original approach. The results also indicate that an automatic variable interaction analysis is capable of estimating the difficulty of the resultant SIV formulations prior to any optimization attempt.
Amir Gandomi, Kalyanmoy Deb, Ronald C. Averill, Shahryar Rahnamayan, Mohammad Nabi Omidvar (2018). Using semi-independent variables to enhance optimization search. Expert Systems with Applications, 120, pp. 279-297, DOI: 10.1016/j.eswa.2018.11.031.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Expert Systems with Applications
DOI
10.1016/j.eswa.2018.11.031
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access