Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Using semi-independent variables to enhance optimization search

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Using semi-independent variables to enhance optimization search

0 Datasets

0 Files

English
2018
Expert Systems with Applications
Vol 120
DOI: 10.1016/j.eswa.2018.11.031

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Amir Gandomi
Kalyanmoy Deb
Ronald C. Averill
+2 more

Abstract

In this study, the concept of a semi-independent variable (SIV) problem representation is investigated that embodies a set of expected or desired relationships among the original variables, with the goal of increasing search effectiveness and efficiency. The proposed approach intends to eliminate the generation of infeasible solutions associated with the known relationships among the variables and cutting the search space, thereby potentially improving a search algorithm's convergence rate and narrowing down the search space. However, this advantage does not come for free. The issue is the multiplicity of SIV formulations and their varying degree of complexity, especially with respect to variable interaction. In this paper, we propose the use of automatic variable interaction analysis methods to compare and contrast different SIV formulations. The performance of the proposed approach is demonstrated by implementing it within a number of classical and evolutionary optimization algorithms (namely, interior-point algorithm, simulated annealing, particle swarm optimization, genetic algorithm and differential evolution) in the application to several practical engineering problems. The case study results clearly show that the population-based algorithms can significantly benefit from the proposed SIV formulation resulting in better solutions with fewer function evaluations than in the original approach. The results also indicate that an automatic variable interaction analysis is capable of estimating the difficulty of the resultant SIV formulations prior to any optimization attempt.

How to cite this publication

Amir Gandomi, Kalyanmoy Deb, Ronald C. Averill, Shahryar Rahnamayan, Mohammad Nabi Omidvar (2018). Using semi-independent variables to enhance optimization search. Expert Systems with Applications, 120, pp. 279-297, DOI: 10.1016/j.eswa.2018.11.031.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Expert Systems with Applications

DOI

10.1016/j.eswa.2018.11.031

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access