0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCalcium sulfoaluminate (CSA) cement has emerged as a low-carbon alternative to ordinary Portland cement (OPC), offering reduced CO2 emissions and rapid strength development. However, the role of the ferrite phase in CSA systems remains underexplored. This study investigates the influence of ferrite-phase composition on CSA cement properties through targeted clinker design, hydration analysis, and macro–micro performance testing. Nine clinker formulations were synthesized by systematically increasing the ferrite content (10–30%) while adjusting belite (C2S) proportions, using limestone, bauxite, and supplementary Fe2O3/SiO2. Results reveal that the ferrite phase enhances the formation and stabilization of ye’elimite (C4A3Š) during clinkering and reduces low-activity transitional phase products. Increasing the iron-phase content appropriately improves early strength by promoting ettringite (AFt) formation and refines pore structures to enhance later strength development. The maximum strength improvement is achieved when the target ferrite-phase content is set to 15%, showing a 25.1% increase in 1 d strength and an 11.5% increase in 28 d strength. While ferrite phases and C2S ensure long-term strength gains, excessive ferrite content reduces C4A3Š availability, limiting early AFt formation and compromising initial strength. These findings highlight the dual role of the ferrite phase in optimizing CSA cement performance and sustainability, providing a foundation for designing ferrite-rich, low-carbon binders.
Songsong Lian, Yu Shao, Chenyu Wang, Yutian Bi, Jiaxing Ma, Keping Han, Anyou Zhu, Guogang Ying (2025). Unveiling the Influence and Mechanisms of Enhancing Ferrite-Phase Composition on the Properties of Calcium Sulfoaluminate Cement. , 18(11), DOI: https://doi.org/10.3390/ma18112457.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/ma18112457
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access