Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ultra-reliable short message cooperative relaying protocols under Nakagami-m fading

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2017

Ultra-reliable short message cooperative relaying protocols under Nakagami-m fading

0 Datasets

0 Files

English
2017
Vol 55
Vol. 55
DOI: 10.1109/iswcs.2017.8108126

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Parisa Nouri
Hirley Alves
Richard Demo Souza
+1 more

Abstract

In the next few years, the development of wireless communication systems propel the world into a fully connected society where the Machine-type Communications (MTC) plays a substantial role as key enabler in the future cellular systems. MTC is categorized into mMTC and uMTC, where mMTC provides the connectivity to massive number of devices while uMTC is related to low latency and ultra-high reliability of the wireless communications. This paper studies uMTC with incremental relaying technique, where the source and relay collaborate to transfer the message to a destination. In this paper, we compare the performance of two distinct cooperative relaying protocols with the direct transmission under the finite blocklength (FB) regime. We define the overall outage probability in each relaying scenario, supposing Nakagami-m fading. We show that cooperative communication outperforms direct transmission under the FB regime. In addition, we examine the impact of fading severity and power allocation factor on the outage probability and the minimum delay required to meet the ultra-reliable communication requirements. Moreover, we provide the outage probability in closed form.

How to cite this publication

Parisa Nouri, Hirley Alves, Richard Demo Souza, Matti Latva-aho (2017). Ultra-reliable short message cooperative relaying protocols under Nakagami-m fading. , 55, pp. 287-292, DOI: 10.1109/iswcs.2017.8108126.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2017

Authors

4

Datasets

0

Total Files

0

Language

English

DOI

10.1109/iswcs.2017.8108126

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access