0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHalide perovskites have many important optoelectronic properties, including high emission efficiency, high absorption coefficients, color purity, and tunable emission wavelength, which makes these materials promising for optoelectronic applications. However, the inability to precisely control large-scale patterned growth of halide perovskites limits their potential toward various device applications. Here, we report a patterning method for the growth of a cesium lead halide perovskite single crystal array. Our approach consists of two steps: (1) cesium halide salt arrays patterning and (2) chemical vapor transport process to convert salt arrays into single crystal perovskite arrays. Characterizations including energy-dispersive X-ray spectroscopy and photoluminescence have been employed to confirm the chemical compositions and the optical properties of the as-synthesized perovskite arrays. This patterning method enables the patterning of single crystal cesium lead halide perovskite arrays with tunable spacing (from 2 to 20 μm) and crystal size (from 200 nm to 1.2 μm) in high production yield (almost every pixel in the array is successfully grown with converted perovskite crystals). Our large-scale patterning method renders a platform for the study of fundamental properties and opportunities for perovskite-based optoelectronic applications.
Chung-Kuan Lin, Qiuchen Zhao, Ye Zhang, Stefano Cestellos-Blanco, Qiao Kong, Minliang Lai, Joohoon Kang, Peidong Yang (2020). Two-Step Patterning of Scalable All-Inorganic Halide Perovskite Arrays. , 14(3), DOI: https://doi.org/10.1021/acsnano.9b09685.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.9b09685
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access