0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images. The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions while alerting users to confidently incorrect and uncertain predictions, which can promote trust in automated systems. The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability by assessing the certainty of diagnostic predictions. Within a two-tier model framework, the tier one model generates initial predictions and associated uncertainties, which the second tier model uses to produce a trust indicator alongside the diagnostic outcome. This dual-output model not only predicts COVID-19 cases but also provides a trust flag, indicating the reliability of each diagnosis and aiming to minimize the need for retesting and expert verification. The effectiveness of this approach is demonstrated through extensive experiments on the COVIDx CXR-4 dataset, showing a novel approach in identifying and handling confidently incorrect cases and uncertain cases, thus enhancing the trustworthiness of automated diagnostics in clinical settings.
Hassan Gharoun, Mohammad Sadegh Khorshidi, Fang Chen, Amir Gandomi (2024). Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification. arXiv (Cornell University), DOI: 10.48550/arxiv.2410.02805.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2410.02805
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access