Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2024

Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification

0 Datasets

0 Files

English
2024
arXiv (Cornell University)
DOI: 10.48550/arxiv.2410.02805

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Hassan Gharoun
Mohammad Sadegh Khorshidi
Fang Chen
+1 more

Abstract

This study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images. The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions while alerting users to confidently incorrect and uncertain predictions, which can promote trust in automated systems. The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability by assessing the certainty of diagnostic predictions. Within a two-tier model framework, the tier one model generates initial predictions and associated uncertainties, which the second tier model uses to produce a trust indicator alongside the diagnostic outcome. This dual-output model not only predicts COVID-19 cases but also provides a trust flag, indicating the reliability of each diagnosis and aiming to minimize the need for retesting and expert verification. The effectiveness of this approach is demonstrated through extensive experiments on the COVIDx CXR-4 dataset, showing a novel approach in identifying and handling confidently incorrect cases and uncertain cases, thus enhancing the trustworthiness of automated diagnostics in clinical settings.

How to cite this publication

Hassan Gharoun, Mohammad Sadegh Khorshidi, Fang Chen, Amir Gandomi (2024). Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification. arXiv (Cornell University), DOI: 10.48550/arxiv.2410.02805.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2024

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

DOI

10.48550/arxiv.2410.02805

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access