Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Transport of Ions and Molecules in Nanofluidic Devices

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2008

Transport of Ions and Molecules in Nanofluidic Devices

0 Datasets

0 Files

en
2008
DOI: 10.1115/icnmm2008-62065

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peidong Yang
Peidong Yang

University of California, Berkeley

Verified
Rohit Karnik
Chuanhua Duan
Kenneth Castelino
+3 more

Abstract

Interesting transport phenomena arise when fluids are confined to nanoscale dimensions in the range of 1–100 nm. We examine three distinct effects that influence ionic and molecular transport as the size of fluidic channels is decreased to the nanoscale. First, the length scale of electrostatic interactions in aqueous solutions becomes comparable to nanochannel size and the number of surface charges becomes comparable to the number of ions in the channel. Second, the size of the channel becomes comparable to the size of biomolecules such as proteins and DNA. Third, large surface area-to-volume ratios result in rapid rates of surface reactions and can dramatically affect transport of molecules through the channel. These phenomena enable us to control transport of ions and molecules in unique ways that are not possible in larger channels. Electrostatic interactions enable local control of ionic concentrations and transport inside nanochannels through field effect in a nanofluidic transistor, which is analogous to the metal-oxide-semiconductor field effect transistor. Furthermore, by controlling surface charge in nanochannels, it is possible to create a nanofluidic diode that rectifies ionic transport through the channel. Biological binding events result in partial blockage of the channel, and can thus be sensed by a decrease in nanochannel conductance. At low ionic concentrations, the effect of biomolecular charge is dominant and it can lead to an increase in conductance. Surface reactions can also be used to control transport of molecules though the channel due to the large surface area-to-volume ratios. Rapid surface reactions enable a new technique of diffusion-limited patterning (DLP), which is useful for patterning of biomolecules and surface charge in nanochannels. These examples illustrate how electrostatic interactions, biomolecular size, and surface reactions can be used for controlling ionic and molecular transport through nanochannels. These phenomena may be useful for operations such as analyte focusing, pH and ionic concentration control, and biosensing in micro- and nanofluidic devices.

How to cite this publication

Rohit Karnik, Chuanhua Duan, Kenneth Castelino, Rong Fan, Peidong Yang, Arun Majumdar (2008). Transport of Ions and Molecules in Nanofluidic Devices. , DOI: https://doi.org/10.1115/icnmm2008-62065.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2008

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1115/icnmm2008-62065

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access