0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA comprehensive approach is essential in India's ongoing battle against air pollution, combining technological advancements, regulatory reinforcement, and widespread societal engagement. Bridging technological gaps involves deploying sophisticated pollution control technologies and addressing the rural–urban disparity through innovative solutions. The review found that integrating Artificial Intelligence and Machine Learning (AI&ML) in air quality forecasting demonstrates promising results with a remarkable model efficiency. In this study, initially, we compute the PM2.5 concentration over India using a surface mass concentration of 5 key aerosols such as black carbon (BC), dust (DU), organic carbon (OC), sea salt (SS) and sulphates (SU), respectively. The study identifies several regions highly vulnerable to PM2.5 pollution due to specific sources. The Indo-Gangetic Plains are notably impacted by high concentrations of BC, OC, and SU resulting from anthropogenic activities. Western India experiences higher DU concentrations due to its proximity to the Sahara Desert. Additionally, certain areas in northeast India show significant contributions of OC from biogenic activities. Moreover, an AI&ML model based on convolutional autoencoder architecture underwent rigorous training, testing, and validation to forecast PM2.5 concentrations across India. The results reveal its exceptional precision in PM2.5 prediction, as demonstrated by model evaluation metrics, including a Structural Similarity Index exceeding 0.60, Peak Signal-to-Noise Ratio ranging from 28–30 dB and Mean Square Error below 10 μg/m3. However, regulatory challenges persist, necessitating robust frameworks and consistent enforcement mechanisms, as evidenced by the complexities in predicting PM2.5 concentrations. Implementing tailored regional pollution control strategies, integrating AI&ML technologies, strengthening regulatory frameworks, promoting sustainable practices, and encouraging international collaboration are essential policy measures to mitigate air pollution in India.
Kuldeep Singh Rautela, Manish Kumar Goyal (2024). Transforming air pollution management in India with AI and machine learning technologies. Scientific Reports, 14(1), DOI: 10.1038/s41598-024-71269-7.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/s41598-024-71269-7
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access