0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMetal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. Electrochemical and spectroscopic measurements provide experimental evidence for the type II band alignment necessary for favorable electron transfer from BiVO4 to TiO2. The host-guest nanowire architecture presented here allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent density of 2.1 mA/cm(2) at 1.23 V vs RHE.
Joaquin Resasco, Hao Zhang, Nikolay Kornienko, Nigel Becknell, Hyunbok Lee, Jinghua Guo, Alejandro L. Briseño, Peidong Yang (2016). TiO<sub>2</sub>/BiVO<sub>4</sub> Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. , 2(2), DOI: https://doi.org/10.1021/acscentsci.5b00402.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acscentsci.5b00402
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access