0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes the use of thread as a matrix for the fabrication of diagnostic assay systems. The kinds of thread used for this study are inexpensive, broadly available, and lightweight; some of them are already familiar materials in healthcare. Fluids wick along these threads by capillary action; no external power source is necessary for pumping. This paper demonstrates three designs for diagnostic assays that use different characteristics of the thread. The first two designs—the "woven array" and the "branching design"—take advantage of the ease with which thread can be woven on a loom to generate fluidic pathways that enable multiple assays to be performed in parallel. The third design—the "sewn array"—takes advantage of the ease with which thread can be sewn through a hydrophobic polymer sheet to incorporate assays into bandages, diapers and similar systems. These designs lead to microfluidic devices that may be useful in performing simple colorimetric assays that require qualitative results. We demonstrate the function of thread-based microfluidic devices in the context of five different colorimetric assays: detection of ketones, nitrite, protein, and glucose in artificial urine, and detection of alkaline phosphatase in artificial plasma.
Meital Reches, Katherine A. Mirica, Rohit K. Dasgupta, Michael D. Dickey, Manish J. Butte, George M M Whitesides (2010). Thread as a Matrix for Biomedical Assays. , 2(6), DOI: https://doi.org/10.1021/am1002266.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/am1002266
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access