Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Thousands of Previously Unknown Phages Discovered in Whole-community Human Gut Metagenomes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2020

Thousands of Previously Unknown Phages Discovered in Whole-community Human Gut Metagenomes

0 Datasets

0 Files

en
2020
DOI: 10.21203/rs.3.rs-89426/v1

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Eugene V Koonin
Eugene V Koonin

National Center for Biotechnology Information

Verified
Sean Benler
Natalya Yutin
Dmitry Antipov
+5 more

Abstract

Abstract Background: Double-stranded DNA bacteriophages (dsDNA phages) play pivotal roles in structuring human gut microbiomes; yet, the gut phageome is far from being fully characterized, and additional groups of phages, including highly abundant ones, continue to be discovered by metagenome mining. A multilevel framework for taxonomic classification of viruses was recently adopted, facilitating the classification of phages into evolutionary informative taxonomic units based on hallmark genes. Together with advanced approaches for sequence assembly and powerful methods of sequence analysis, this revised framework offers the opportunity to discover and classify unknown phage taxa in the human gut.Results:A search of human gut metagenomes for circular contigs encoding phage hallmark genes resulted in the identification of 3,738 apparently complete phage genomes that represent 451 putative genera. Several of these phage genera are only distantly related to previously identified phages and are likely to found new families. Two of the candidate families, “Flandersviridae” and “Quimbyviridae”, include some of the most common and abundant members of the human gut virome that infect Bacteroides, Parabacteroides and Prevotella. The third proposed family, “Gratiaviridae”, consists of less abundant phages that are distantly related to the families Autographiviridae, Drexlerviridae and Chaseviridae. Analysis of CRISPR spacers indicates that phages of all three putative families infect bacteria of the phylum Bacteroidetes. Comparative genomic analysis of the three candidate phage families revealed features without precedent in phage genomes. Some “Quimbyviridae” phages possess Diversity-Generating Retroelements (DGRs) that generate hypervariable target genes nested within defense-related genes, whereas the previously known targets of phage-encoded DGRs are structural genes. Several “Flandersviridae” phages encode enzymes of the isoprenoid pathway, a lipid biosynthesis pathway that so far has not been known to be manipulated by phages. The “Gratiaviridae” phages encode a HipA-family protein kinase and glycosyltransferase, suggesting these phages modify the host cell wall, preventing superinfection by other phages. Hundreds of phages in these three and other families are shown to encode catalases and iron-sequestering enzymes that can be predicted to enhance cellular tolerance to reactive oxygen species.Conclusions:Analysis of phage genomes identified in whole-community human gut metagenomes resulted in the delineation of at least three new candidate families of Caudovirales and revealed diverse putative mechanisms underlying phage-host interactions in the human gut. Addition of these phylogenetically classified, diverse and distinct phages to public databases will facilitate taxonomic decomposition and functional characterization of human gut viromes.

How to cite this publication

Sean Benler, Natalya Yutin, Dmitry Antipov, Mikhail Raykov, Sergey Shmakov, Ayal B. Gussow, Pavel A. Pevzner, Eugene V Koonin (2020). Thousands of Previously Unknown Phages Discovered in Whole-community Human Gut Metagenomes. , DOI: https://doi.org/10.21203/rs.3.rs-89426/v1.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2020

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.21203/rs.3.rs-89426/v1

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access