Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Thermo-electrochemical simulation of the cooling process in a compact battery pack considering various configurations

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Thermo-electrochemical simulation of the cooling process in a compact battery pack considering various configurations

0 Datasets

0 Files

English
2022
Journal of Power Sources
Vol 553
DOI: 10.1016/j.jpowsour.2022.232112

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Ping Zhang
Ping Zhang

Institution not specified

Verified
Ahmad Hajatzadeh Pordanjani
Saeed Aghakhani
Masoud Afrand
+5 more

Abstract

Lithium-ion battery (LIB) packs with high power density are necessary in battery-powered system development. In this study, we investigated LIB packs made of compact cylindrical Li-ion batteries. We arranged the batteries in various patterns, including square, lozenge, elliptical, and circular, with all patterns occupying the same total area. We solved the thermal and electrochemical equations governing the batteries using the finite-element method (FEM), and we coupled the airflow around the batteries, meant to lower their temperature, with the LIB equations and solved them using the same method. The results reveal that LIB cooling enhancement and a smaller temperature gradient occur with an increase in the LIB distribution at the center, reducing their outward dissemination and shortening the LIB length. Additionally, increasing the cross-sectional area and airflow velocity enhanced heat transfer from the batteries and decreased their temperature. Finally, we demonstrated that better cooling enhances the cells’ long-term performance. With a circular configuration, the pressure drop and heat transfer rise by 48.01% and 85.14%, respectively, with an increase in the inlet cross-section area. Furthermore, the pressure drop and heat transfer in this configuration increased by 89.09% and 66.90%, respectively, when the velocity increases.

How to cite this publication

Ahmad Hajatzadeh Pordanjani, Saeed Aghakhani, Masoud Afrand, Ping Zhang, Rongjiang Tang, Omid Mahian, Somchai Wongwises, Mohammad Mehdi Rashidi (2022). Thermo-electrochemical simulation of the cooling process in a compact battery pack considering various configurations. Journal of Power Sources, 553, pp. 232112-232112, DOI: 10.1016/j.jpowsour.2022.232112.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Journal of Power Sources

DOI

10.1016/j.jpowsour.2022.232112

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access