0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBiochar application to soil is currently widely advocated for a variety of reasons related to sustainability. Typically, soil amelioration with biochar is presented as a multiple‐‘win’ strategy, although it is also associated with potential risks such as environmental contamination. The most often claimed benefits of biochar (i.e. the ‘wins’) include (i) carbon sequestration; (ii) soil fertility enhancement; (iii) biofuel/bioenergy production; (iv) pollutant immobilization; and (v) waste disposal. However, the vast majority of studies ignore possible trade‐offs between them. For example, there is an obvious trade‐off between maximizing biofuel production and maximizing biochar production. Also, relatively little attention has been paid to mechanisms, as opposed to systems impacts, behind observed biochar effects, often leaving open the question as to whether they reflect truly unique properties of biochar as opposed to being simply the short‐term consequences of a fertilization or liming effect. Here, we provide an outline for the future of soil biochar research. We first identify possible trade‐offs between the potential benefits. Second, to be able to better understand and quantify these trade‐offs, we propose guidelines for robust experimental design and selection of appropriate controls that allow both mechanistic and systems assessment of biochar effects and trade‐offs between the wins. Third, we offer a conceptual framework to guide future experiments and suggest guidelines for the standardized reporting of biochar experiments to allow effective between‐site comparisons to quantify trade‐offs. Such a mechanistic and systems framework is required to allow effective comparisons between experiments, across scales and locations, to guide policy and recommendations concerning biochar application to soil.
Simon Jeffery, Т. Martijn Bezemer, Gerard Cornelissen, Thomas W. Kuyper, Johannes Lehmann, Liesje Mommer, Saran Sohi, Tess F. J. van de Voorde, David A. Wardle, Jan Willem van Groenigen (2013). The way forward in biochar research: targeting trade‐offs between the potential wins. GCB Bioenergy, 7(1), pp. 1-13, DOI: 10.1111/gcbb.12132.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
GCB Bioenergy
DOI
10.1111/gcbb.12132
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access