0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe liquid–metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film—consisting primarily of Ga2O3—that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in AgTS-SAM//Ga2O3/EGaIn (where AgTS = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga2O3 film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga2O3 film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through AgTS-SAM//Ga2O3/EGaIn junctions, and that the electrical characteristics of the Ga2O3 film have a negligible effect on these measurements.
William F. Reus, Martin Thuo, Nathan D. Shapiro, Christian A. Nijhuis, George M M Whitesides (2012). The SAM, Not the Electrodes, Dominates Charge Transport in Metal-Monolayer//Ga<sub>2</sub>O<sub>3</sub>/Gallium–Indium Eutectic Junctions. , 6(6), DOI: https://doi.org/10.1021/nn205089u.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nn205089u
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access