Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The role of PEDOT:PSS in (super)capacitors: A review

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

The role of PEDOT:PSS in (super)capacitors: A review

0 Datasets

0 Files

English
2023
Next Nanotechnology
Vol 2
DOI: 10.1016/j.nxnano.2023.100015

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Herman Terryn
Herman Terryn

Institution not specified

Verified
Néstor Calabia Gascón
Herman Terryn
Annick Hubin

Abstract

Supercapacitors are energy storage devices that, in contrast to classical capacitors, are able to deliver larger amounts of energy keeping a fast charge/discharge rates. They can be considered as the meeting point between batteries and classical capacitors. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is one of the most used conductive polymers (CPs) due to its high thermal stability, low electronic resistance and its ease of application. The role of PEDOT:PSS in supercapacitors where it substitutes the liquid electrolyte is a very interesting approach. Not only it results in a better performing but also a safer option than classical electrolytic capacitors. Despite their wide use in this type of devices, the charge storage mechanism of a PEDOT:PSS layer is still not fully understood. When they were conceived, CPs were automatically classified as pseudocapacitors in terms of their capacitive properties. However, recent analysis of the characteristics of PEDOT:PSS has challenged the origin of the capacitive properties. The mixed ionic-electronic conductivity as a result of the two phases present in PEDOT:PSS (PEDOT rich regions and PSS rich regions) translates into the formation of multiple capacitors in the nanometric scale. These contribute to the total capacitance and they resemble the capacitive mechanism of electrochemical double layers capacitors (EDLC). The combination of PEDOT:PSS with the enlarged surface area of a valve metal such as aluminium gives rise to a solid-state polymer capacitor with low equivalent series resistance (ESR), high capacitance and safer operation conditions than the liquid counterparts. This review covers the recent literature on the main two groups of supercapacitors, namely EDLC and pseudocapacitors, and positions PEDOT:PSS according to the latest findings. Additionally, it presents the challenges of achieving the optimal combination of PEDOT:PSS and aluminium towards better solid-state polymer capacitors at the nanoscale.

How to cite this publication

Néstor Calabia Gascón, Herman Terryn, Annick Hubin (2023). The role of PEDOT:PSS in (super)capacitors: A review. Next Nanotechnology, 2, pp. 100015-100015, DOI: 10.1016/j.nxnano.2023.100015.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Next Nanotechnology

DOI

10.1016/j.nxnano.2023.100015

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access