0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOcean energy is one potential renewable energy alternative to fossil fuels that has a more significant power generation due to its better predictability and availability. In order to harness this source, wave energy converters (WECs) have been devised and used over the past several years to generate as much energy and power as is feasible. While it is possible to install these devices in both nearshore and offshore areas, nearshore sites are more appropriate places since more severe weather occurs offshore. Determining the optimal location might be challenging when dealing with sites along the coast since they often have varying capacities for energy production. Constructing wave farms requires determining the appropriate location for WECs, which may lead us to its correct and optimum design. The WEC size, shape, and layout are factors that must be considered for installing these devices. Therefore, this review aims to explain the methodologies, advancements, and effective hydrodynamic parameters that may be used to discover the optimal configuration of WECs in nearshore locations using evolutionary algorithms (EAs).
Alireza Shadmani, Mohammad Reza Nikoo, Riyadh I. Al‐Raoush, Nasrin Alamdari, Amir Gandomi (2022). The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential. Energies, 15(20), pp. 7734-7734, DOI: 10.3390/en15207734.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Energies
DOI
10.3390/en15207734
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access