0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCalorie restriction (CR) reduces the rate of cell proliferation in mitotic tissues. It has been suggested that this reduction in cell proliferation may mediate CR-induced increases in longevity. However, the mechanisms that lead to CR-induced reductions in cell proliferation rates remain unclear. To evaluate the CR-induced physiological adaptations that may mediate reductions in cell proliferation rates, we altered housing temperature and access to voluntary running wheels to determine the effects of food intake, energy expenditure, percent body fat, and body weight on proliferation rates of keratinocytes, liver cells, mammary epithelial cells, and splenic T-cells in C57BL/6 mice. We found that ∼20% CR led to a reduction in cell proliferation rates in all cell types. However, lower cell proliferation rates were not observed with reductions in 1) food intake and energy expenditure in female mice housed at 27°C, 2) percent body fat in female mice provided running wheels, or 3) body weight in male mice provided running wheels compared with ad libitum-fed controls. In contrast, reductions in insulin-like growth factor I were associated with decreased cell proliferation rates. Taken together, these data suggest that CR-induced reductions in food intake, energy expenditure, percent body fat, and body weight do not account for the reductions in global cell proliferation rates observed in CR. In addition, these data are consistent with the hypothesis that reduced cell proliferation rates could be useful as a biomarker of interventions that increase longevity.
Matthew D. Bruss, Airlia C. S. Thompson, Ishita Aggarwal, Cyrus F. Khambatta, Marc Hellerstein (2011). The effects of physiological adaptations to calorie restriction on global cell proliferation rates. , 300(4), DOI: https://doi.org/10.1152/ajpendo.00661.2010.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1152/ajpendo.00661.2010
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access