0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessABSTRACT As part of a larger completed Hubble Space Telescope (HST) Snapshot program, we observed the sites of six nearby core-collapse supernovae (SNe) at high spatial resolution: SN 2012A, SN 2013ej, SN 2016gkg, SN 2017eaw, SN 2018zd, and SN 2018aoq. These observations were all conducted at sufficiently late times in each SN’s evolution to demonstrate that the massive-star progenitor candidate identified in each case in pre-explosion imaging data had indeed vanished and was therefore most likely the actual progenitor. However, we have determined for SN 2016gkg that the progenitor candidate was most likely a blend of two objects: the progenitor, which itself has likely vanished, and another closely neighbouring star. We thus provide a revised estimate of that progenitor’s properties: a binary system with a hydrogen-stripped primary star at explosion with effective temperature ≈6300–7900 K, bolometric luminosity ≈104.65 L⊙, radius ≈118–154 R⊙, and initial mass 9.5–11 M⊙. Utilizing late-time additional archival HST data nearly contemporaneous with our Snapshots, we also show that SN 2017eaw had a luminous ultraviolet excess, which is best explained as a result of ongoing interaction of the SN shock with pre-existing circumstellar matter. We offer the caveat, particularly in the case of SN 2013ej, that obscuration from SN dust may be compromising our conclusions. This sample adds to the growing list of confirmed or likely core-collapse SN progenitors.
Schuyler D. Van Dyk, Asia de Graw, Raphael Baer-Way, WeiKang Zheng, Alexei V Filippenko, Ori D. Fox, Nathan Smith, Thomas G. Brink, Thomas de Jaeger, Patrick L. Kelly, Sergiy S. Vasylyev (2022). The disappearances of six supernova progenitors. , 519(1), DOI: https://doi.org/10.1093/mnras/stac3549.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1093/mnras/stac3549
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access