Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The carbon sequestration potential of terrestrial ecosystems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

The carbon sequestration potential of terrestrial ecosystems

0 Datasets

0 Files

en
2018
Vol 73 (6)
Vol. 73
DOI: 10.2489/jswc.73.6.145a

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Pete Smith
Pete Smith

University of Aberdeen

Verified
Rattan Lal
Pete Smith
Hermann F. Jungkunst
+12 more

Abstract

Terrestrial ecosystems, comprising vegetation and soil in uplands and wetlands, significantly impact the global carbon (C) cycle and, under natural conditions, are a sink of atmospheric carbon dioxide (CO2) and methane (CH4). However, conversion of natural to managed ecosystems (i.e., agroecosystems, urban lands, and mined lands) depletes ecosystem C stocks, aggravates gaseous emissions, and exacerbates radiative forcing. Thus, the onset of agriculture around 8000 BC presumably transformed these sinks into a source of greenhouse gases (GHGs) (Ruddiman 2003), mostly CO2, CH4, and nitrous oxide (N2O), and depleted the terrestrial (soil, vegetation, and peatlands) C stocks. Ruddiman (2005) estimated the depletion of the terrestrial C stock (soil and vegetation) by 456 Pg (502.65 × 109 tn) since the onset of agriculture. Of this, the historic depletion of soil organic carbon (SOC) stock is estimated at 130 to 135 Pg (143.3 × 109 to 148.8 × 109 tn) (Sanderman et al. 2017; Lal 2018). Therefore, recarbonization of some of the terrestrial biosphere (soil and vegetation) is an important strategy to mitigate the anthropogenic climate change (ACC) and enhance other ecosystem services because of the link between SOC stock and atmospheric concentration of CO2 (Trenberth and Smith 2005).

How to cite this publication

Rattan Lal, Pete Smith, Hermann F. Jungkunst, William J. Mitsch, Johannes Lehmann, P. K. R. Nair, Alex B. McBratney, João Carlos de Moraes Sá, J. Schneider, Yuri Lopes Zinn, Alba Lucia Araujo Skorupa, Hai Lin Zhang, Budiman Minasny, Cherukumalli Srinivasrao, N. H. Ravindranath (2018). The carbon sequestration potential of terrestrial ecosystems. , 73(6), DOI: https://doi.org/10.2489/jswc.73.6.145a.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

15

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.2489/jswc.73.6.145a

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access