0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSystemic vascular endothelial growth factor inhibition, in combination with chemotherapy, improves the outcome of patients with metastatic cancer. Peripheral sensory neuropathies occurring in patients receiving both drugs are attributed to the chemotherapy. Here, we provide unprecedented evidence that vascular endothelial growth factor receptor inhibitors trigger a painful neuropathy and aggravate paclitaxel-induced neuropathies in mice. By using transgenic mice with altered neuronal vascular endothelial growth factor receptor expression, systemic inhibition of vascular endothelial growth factor receptors was shown to interfere with the endogenous neuroprotective activities of vascular endothelial growth factor on sensory neurons. In vitro, vascular endothelial growth factor prevented primary dorsal root ganglion cultures from paclitaxel-induced neuronal stress and cell death by counteracting mitochondrial membrane potential decreases and normalizing hyperacetylation of α-tubulin. In contrast, vascular endothelial growth factor receptor inhibitors exerted opposite effects. Intriguingly, vascular endothelial growth factor or vascular endothelial growth factor receptor inhibitors exerted their effects through a mechanism whereby Hdac6, through Hsp90, controls vascular endothelial growth factor receptor-2-mediated expression of the anti-apoptotic Bcl2. Our observations that systemic anti-vascular endothelial growth factor therapies interfere with the neuroprotective activities of vascular endothelial growth factor may have important implications for the application of anti-vascular endothelial growth factor therapies in cancer patients.
An Verheyen, Eve Peeraer, Rony Nuydens, Joke Dhondt, Koen Poesen, Isabel Pintelon, Anneleen Daniels, Jean‐Pierre Timmermans, Theo Meert, Peter Carmeliet, Diether Lambrechts (2012). Systemic anti-vascular endothelial growth factor therapies induce a painful sensory neuropathy. , 135(9), DOI: https://doi.org/10.1093/brain/aws145.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1093/brain/aws145
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access