0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAdvancement of solid state electrolytes (SSEs) for all solid state batteries typically focuses on modification of a parent structural framework for improved conductivity, \textit{e.g.} cation substitution for an immobile ion or varying the concentration of the mobile ion. Therefore, novel frameworks can be disruptive by enabling fast ion conduction aided by different structure and diffusion mechanisms, and unlocking optimal conductors with different properties (\textit{e.g.} mechanical properties, sintering needs, electrochemical stability) than previously published. Herein, we perform a high throughput survey of an understudied structural framework for sodium ion conduction, Na$_{8-x}$A$^x$P$_2$O$_9$ (NAP), to understand the family's thermodynamic stability, synthesizability, and ionic conduction. We first show that the parent phase Na$_4$TiP$_2$O$_9$ (NTP) undergoes a structural distortion (with accompanying conductivity transition) due to unstable phonons from a pseduo-Jahn Teller mode in the 1D titanium chains. Then, screening of cation-substituted structural candidates with \textit{ab initio} and machine-learned potential calculations reveal a number of candidates that are thermodynamically stable, likely synthesizable, and have high predicted ionic conductivities. High throughput experimental trials and subsequent methodology optimization of one Na$_4$SnP$_2$O$_9$ (NSP) highlight collective challenges to the synthesis pathways for sodium phosphate materials via solid state synthesis. Our results demonstrate that NAP is a highly tunable conduction framework whose high temperature conductivity transition has heretofore eliminated it from significant research interest. By expanding the structural toolkit for SSE design, we increase the number of useful sodium ion electrolytes for integration into safe and accessible solid state batteries.
Lauren N. Walters, Yuxing Fei, Bernardus Rendy, Xiaochen Yang, Mouhamad Diallo, KyuJung Jun, Grace Wei, Matthew J. McDermott, Andrea Giunto, Tara P. Mishra, Fengyu Shen, David Milsted, May Sabai Oo, Haegyeom Kim, Michael C. Tucker, Gerbrand Ceder (2025). Synthetic accessibility and sodium ion conductivity of the Na$_{8-x}$A$^{x}$P$_2$O$_9$ (NAP) high-temperature sodium superionic conductor framework. , DOI: https://doi.org/10.48550/arxiv.2501.03165.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2025
Authors
16
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2501.03165
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access