0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na 2 SiO 3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption.
Twana Ahmed Hussein, Mohammad Ali Mosaberpanah, Rawaz Kurda (2023). Synergic effect of polyester fiber and nano silica on chemical resistance of geopolymer mortar. , 18(9), DOI: https://doi.org/10.1371/journal.pone.0289497.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1371/journal.pone.0289497
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access