Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-Analysis

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2022

Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-Analysis

0 Datasets

0 Files

en
2022
DOI: 10.20944/preprints202203.0155.v1

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
John P A Ioannidis
John P A Ioannidis

Stanford University

Verified
Kaiming Tao
Philip L. Tzou
Sergei L. Kosakovsky Pond
+2 more

Abstract

SARS-CoV-2 Omicron variants contain many mutations in its spike receptor binding domain, the target of all authorized monoclonal antibodies (mAbs). Determining the extent to which Omicron variants reduced mAb susceptibility is critical to preventing and treating COVID-19. We systematically reviewed PubMed and three preprint servers, last updated February 22, 2022, of the in vitro activity of authorized mAbs against the Omicron variants. Thirty-three studies were eligible including 33 containing Omicron BA.1 susceptibility data and five that also contained Omicron BA.2 susceptibility data. The first two authorized mAb combinations, bamlanivimab/etesevimab and casirivimab/imdevimab, were inactive against the Omicron BA.1 and BA.2 variants. In 24 studies, sotrovimab (third authorized mAb) displayed a median 4.1-fold (IQR: 2.4-7.6) reduced activity against Omicron BA.1 and, in four studies, a median 26-fold (IQR:16-35) reduced activity against Omicron BA.2. In 18 studies, cilgavimab and tixagevimab independently displayed median reductions in activity of >300-fold against Omicron BA.1, while in ten studies, the cilgavimab/tixagevimab combination (fourth authorized mAb preparation) displayed a median 63-fold (IQR: 26-145) reduced activity against Omicron BA.1. In two studies, cilgavimab was approximately 100-fold more susceptible to BA.2 than to BA.1. In two studies, bebtelovimab, the most recently authorized mAb, was fully active against both the Omicron variants. Disparate results between assays were common as evidenced by a median 42-fold range (IQR: 25-625) in IC50 between assays for the eight authorized individual mAbs and three authorized mAb combinations. Highly disparate results between published assays indicates a need for improved mAb susceptibility test standardization or inter-assay calibration.

How to cite this publication

Kaiming Tao, Philip L. Tzou, Sergei L. Kosakovsky Pond, John P A Ioannidis, Robert W. Shafer (2022). Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-Analysis. , DOI: https://doi.org/10.20944/preprints202203.0155.v1.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.20944/preprints202203.0155.v1

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access