0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCoupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T)) is widely considered to be the "gold standard" of ab initio quantum chemistry. Using the domain-based pair natural orbital local correlation concept (DLPNO-CCSD(T)), these calculations can be performed on systems with hundreds of atoms at an accuracy of ∼99.9% of the canonical CCSD(T) method. This allows for ab initio calculations providing reference adsorption energetics at solid surfaces with an accuracy approaching 1 kcal/mol. This is an invaluable asset, not least for the assessment of density functional theory (DFT) as the prevalent approach for large-scale production calculations in energy or catalysis applications. Here we use DLPNO-CCSD(T) with embedded cluster models to compute entire adsorbate potential energy surfaces for the binding of a set of prototypical closed-shell molecules (H2O, NH3, CH4, CH3OH, CO2) to the rutile TiO2(110) surface. The DLPNO-CCSD(T) calculations show excellent agreement with available experimental data, even for the "infamous" challenge of correctly predicting the CO2 adsorption geometry. The numerical efficiency of the approach is within 1 order of magnitude of hybrid-level DFT calculations, hence blurring the borders between reference and production technique.
Adam Kubas, Daniel Berger, Harald Oberhofer, Dimitrios Maganas, Karsten Reuter, Frank Neese (2016). Surface Adsorption Energetics Studied with “Gold Standard” Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO<sub>2</sub>(110). The Journal of Physical Chemistry Letters, 7(20), pp. 4207-4212, DOI: 10.1021/acs.jpclett.6b01845.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
The Journal of Physical Chemistry Letters
DOI
10.1021/acs.jpclett.6b01845
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access