0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe III–V InP/InGaAsP/InGaAs material family is important for photonic devices due to its optical emission and absorption in the 1.55 and 1.3 μm telecommunication bands for optical interconnects. However, InGaAsP/InGaAs generally suffer from relatively high surface recombination velocity—compared to Si [Das et al., in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Calgary, AB, 2020), pp. 1167–1170] and InP [Joyce et al., Nano Lett. 12, 5325–5330 (2012)], which reduces the efficiency and can increase the noise in nanophotonic devices. Here, we demonstrate an efficient method to passivate the surface using a combination of sulfur-saturated ammonium sulfide and atomic layer deposition. After annealing, the surface passivation led to a surface recombination velocity as low as 45 cm/s, corresponding to a >180× increase in the photoluminesence of a nanoscale light-emitting device with 200 nm width.
Nicolas M. Andrade, Sean Hooten, Yunjo Kim, Jeehwan Kim, Eli Yablonovitch, Ming C. Wu (2021). Sub-50 cm/s surface recombination velocity in InGaAsP/InP ridges. , 119(19), DOI: https://doi.org/10.1063/5.0062824.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1063/5.0062824
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access