Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Study of In-Vehicle Ethernet Message Scheduling Based on the Adaptive Frame Segmentation Algorithm

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Study of In-Vehicle Ethernet Message Scheduling Based on the Adaptive Frame Segmentation Algorithm

0 Datasets

0 Files

English
2025
Sensors
Vol 25 (8)
DOI: 10.3390/s25082522

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yi-hu Xu
Yi-hu Xu

Institution not specified

Verified
Jiaoyue Chen
Yujing Wu
Yi-hu Xu
+2 more

Abstract

With the rapid development of intelligent driving technology, in-vehicle bus networks face increasingly stringent requirements for real-time performance and data transmission. Traditional bus network technologies such as LIN, CAN, and FlexRay are showing significant limitations in terms of bandwidth and response speed. In-Vehicle Ethernet, with its advantages of high bandwidth, low latency, and high reliability, has become the core technology for next-generation in-vehicle communication networks. This study focuses on bandwidth waste caused by guard bands and the limitations of Frame Pre-Emption in fully utilizing available bandwidth in In-Vehicle Ethernet. It aims to optimize TSN scheduling mechanisms by enhancing scheduling flexibility and bandwidth utilization, rather than modeling system-level vehicle functions. Based on the Time-Sensitive Networking (TSN) protocol, this paper proposes an innovative Adaptive Frame Segmentation (AFS) algorithm. The AFS algorithm enhances the performance of In-Vehicle Ethernet message transmission through flexible frame segmentation and efficient message scheduling. Experimental results indicate that the AFS algorithm achieves an average local bandwidth utilization of 94.16%, improving by 4.35%, 5.65%, and 30.48% over Frame Pre-Emption, Packet-Size Aware Scheduling (PAS), and Improved Qbv algorithms, respectively. The AFS algorithm demonstrates stability and efficiency in complex network traffic scenarios, reducing bandwidth waste and improving In-Vehicle Ethernet’s real-time performance and responsiveness. This study provides critical technical support for efficient communication in intelligent connected vehicles, further advancing the development and application of In-Vehicle Ethernet technology.

How to cite this publication

Jiaoyue Chen, Yujing Wu, Yi-hu Xu, Kaihang Zhang, Yinan Xu (2025). Study of In-Vehicle Ethernet Message Scheduling Based on the Adaptive Frame Segmentation Algorithm. Sensors, 25(8), pp. 2522-2522, DOI: 10.3390/s25082522.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Sensors

DOI

10.3390/s25082522

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access