0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWith the rapid development of advanced driver assistance systems (ADASs) and autonomous driving technology, in-vehicle networks are facing huge challenges in real-time operation and data loss. Traditional vehicle bus network systems such as LIN, CAN, and FlexRay are insufficient to meet the real-time requirements of intelligent connected vehicles. In-vehicle Ethernet meets the requirements of high reliability, low electromagnetic radiation, low power consumption, bandwidth allocation, low latency, and real-time synchronization of intelligent connected vehicles. In-vehicle Ethernet has become one of the trends in the next generation of in-vehicle network architecture. This research focuses on the delay problem existing in the real-time data transmission process of in-vehicle Ethernet, and innovatively proposes a fixed point message scheduling algorithm (FPMS) based on time-sensitive network (TSN) technology. By building an experimental platform based on the CANoe simulation tool, the high-efficiency message transmission performance of the fixed point message scheduling algorithm was verified. Experimental results show that the fixed point message scheduling algorithm proposed in this study improves message transmission efficiency by 66%, laying a solid foundation for improving the real-time and reliability performance of in-vehicle Ethernet.
Jiaoyue Chen, Qihui Zuo, Yi-hu Xu, Yujing Wu, Wenquan Jin, Yinan Xu (2024). Study of Fixed Point Message Scheduling Algorithm for In-Vehicle Ethernet. Electronics, 13(11), pp. 2050-2050, DOI: 10.3390/electronics13112050.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Electronics
DOI
10.3390/electronics13112050
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access