Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Structural health monitoring under environmental and operational variations using MCD prediction error

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Structural health monitoring under environmental and operational variations using MCD prediction error

0 Datasets

0 Files

English
2021
Journal of Sound and Vibration
Vol 512
DOI: 10.1016/j.jsv.2021.116370

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Mohsen Mousavi
Amir Gandomi

Abstract

This paper proposes a novel technique that aims at detecting the effect of damage on structural frequency signals as “bad” outliers. To this end, a procedure is developed based on the Variational Mode Decomposition (VMD), Minimum Covariance Determinant (MCD), and Recurrent Neural Network (RNN) with Bi-directional Long-Short Term Memory (BiLSTM) cells. The VMD is first used in a pre-processing stage to denoise the signals and remove the seasonal patterns in them. Then, the proposed method seeks to learn the rules behind calculation of the Mahalanobis distances of the points from their distribution, using the parameters obtained from the MCD algorithm, through training an RNN on signals obtained from the inferior state of the structure (healthy state). It will be shown that, since the rule behind the effect of damage on the Mahalanobis distances has not been learnt by the trained RNN, the prediction errors of these values will increase significantly as soon as damage occurs using the data obtained from the posterior state of the structure (including damage). The performance of the proposed method is first tested on a numerical example and further validated through solving an experimental example of the Z24 bridge. Moreover, the proposed method is compared against a PCA-based method. The results demonstrate the superiority of the proposed method in long-term condition monitoring of civil infrastructures. The proposed method is an output-only condition monitoring method that requires only a couple of lowest structural natural frequency signals measured over a long-term monitoring of the structure. Therefore, it is recommended for cases when the measurements from the EOV are not available. Also the proposed method can be used along with other output-only or input-out methods to either improve or confirm the validity of their results.

How to cite this publication

Mohsen Mousavi, Amir Gandomi (2021). Structural health monitoring under environmental and operational variations using MCD prediction error. Journal of Sound and Vibration, 512, pp. 116370-116370, DOI: 10.1016/j.jsv.2021.116370.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

Journal of Sound and Vibration

DOI

10.1016/j.jsv.2021.116370

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access