Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Strength, durability, and microstructure of self-compacting geopolymer concrete produced with copper slag aggregates

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2022

Strength, durability, and microstructure of self-compacting geopolymer concrete produced with copper slag aggregates

0 Datasets

0 Files

en
2022
DOI: 10.21203/rs.3.rs-1323386/v1

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Thong M Pham
Thong M Pham

Institution not specified

Verified
Saloni Arora
Parveen Jangra
Yee Yan Lim
+1 more

Abstract

Abstract Lack of vibrations on fresh concrete negatively influences the compaction and thus the quality of concrete. This is particularly concerning with geopolymer concrete (GPC) containing sodium silicate (Na 2 SiO 3 ), which is viscous in nature. In this study, self-compacting geopolymer concrete (SCGC) containing fly ash (FA) and ultrafine slag (UFS) with copper slag aggregates (CSA) was proposed and investigated. CSA were used as a substitute to sand (by weight) in SCGC at different percentages up to 60%. In the fresh state, slump, T500 slump flow, V-funnel, L-box, U-box, and sieve aggregation ratio tests were performed to investigate flowability, passing ability, and viscosity. At the hardened state, the compressive strength, water absorption, chloride ion resistance and sorptivity tests were examined. The flowability of SCGC improved when CSA were added, and the highest slump of 735 mm was achieved for the mix with 60% CSA. Substitution of up to 20% of CSA enhanced the properties of SCGC at all ages. Mix having 20% CSA (20CSA-SCGC) was superior to other mixes, exhibiting the highest compressive strength (47 MPa) at 365 days while possessing the lowest water absorption, sorptivity, and the highest chloride ion resistance. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses also confirmed the improved microstructure of Mix 20CSA-SCGC. Meanwhile, X-ray diffraction (XRD) analysis confirmed the presence of quartz and calcium silicate hydrate (CSH) products, which were the main contributors to properties enhancement.

How to cite this publication

Saloni Arora, Parveen Jangra, Yee Yan Lim, Thong M Pham (2022). Strength, durability, and microstructure of self-compacting geopolymer concrete produced with copper slag aggregates. , DOI: https://doi.org/10.21203/rs.3.rs-1323386/v1.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.21203/rs.3.rs-1323386/v1

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access