0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUnderstanding complex neuronal networks requires monitoring long‐term neuronal activity in various regions of the brain. Significant progress has been made in multisite implantations of well‐designed probes, such as multisite implantation of Si‐based and polymer‐based probes. However, these multiprobe strategies are limited by the sizes and weights of interfaces to the multiple probes and the inability to track the activity of the same neurons and changes in neuronal activity over longer time periods. Here, a long single flexible probe that can be implanted by stitching into multiple regions of the mouse brain and subsequently transmit chronically stable neuronal signals from the multiple sites via a single low‐mass interface is reported. The probe at four different sites is implemented using a glass capillary needle or two sites using an ultrathin metal needle. In vitro tests in brain‐mimicking hydrogel show that multisite probe implantations achieve a high connection yield of >86%. In vivo histological images at each site of probes, implanted by stitching using either glass capillary or ultrathin metal insertion needles exhibit seamless tissue–probe interfaces with negligible chronic immune response. In addition, electrophysiology studies demonstrate the ability to track single neuron activities at every injection site with chronic stability over at least one month. Notably, the measured spike amplitudes and signal‐to‐noise ratios at different implantation sites show no statistically significant differences. Multisite stitching implantation of flexible electronics in the brain opens up new opportunities for both fundamental neuroscience research and electrotherapeutic applications.
Jung Min Lee, Dingchang Lin, Young-Woo Pyo, Ha‐Reem Kim, Hong‐Gyu Park, Charles M. Lieber (2023). Stitching Flexible Electronics into the Brain. Advanced Science, 10(16), DOI: 10.1002/advs.202300220.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Advanced Science
DOI
10.1002/advs.202300220
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access