0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOne of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.
Mohammad Ali Mosaberpanah, Ozgur Eren (2017). Statistical models for mechanical properties of UHPC using response surface methodology. Computers and Concrete, an International Journal, 19(6), DOI: 10.12989/cac.2017.19.6.667.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Computers and Concrete, an International Journal
DOI
10.12989/cac.2017.19.6.667
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access