0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWeb crippling involves the failure of pultruded glass fibre reinforced polymer (GFRP) profiles under transverse concentrated loading. The possible failure modes include web buckling, web crushing and web-flange junction failure, which are very different from those of metallic sections, which are isotropic and yield. This paper provides a comprehensive review of the up-to-date research advancement in web crippling of pultruded GFRP profiles from four perspectives. Firstly, the experimental results available in the literature are summarized and a database is tabulated. Secondly, the factors influencing failure modes and web crippling resistance are analysed, including loading conditions, section geometries, and material properties. Thirdly, recent advancement in numerical modelling is reviewed and paths for improvement are identified. Lastly, analytical models for predicting web crippling resistance are reviewed and their accuracy is assessed by comparing predictions with experimental results from the database. It is concluded that this research area is still in its early stages and more experiments need to be conducted, in a standardized and systematic manner; in addition, more detailed material properties should be characterized for a better interpretation of the failure mechanisms. Accurate and reliable analytical models covering all design cases are not yet available, and most existing analytical models still need to be validated with independent experimental data. Finally, the paper identifies key research gaps and proposes future research directions. This paper also provides a benchmark for the future development of design provisions regarding the web crippling of pultruded GFRP profiles.
Chao Wu, Yue Ding, Lourenço Almeida-Fernandes, José Gonilha, Nuno Silvestre, João R. Correia (2023). State-of-the-art review on the web crippling of pultruded GFRP profiles. Thin-Walled Structures, 192, pp. 111128-111128, DOI: 10.1016/j.tws.2023.111128.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Thin-Walled Structures
DOI
10.1016/j.tws.2023.111128
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access